Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
ChemMedChem ; : e202400199, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722488

RESUMEN

Lipid nanoparticles (LNPs) are the most clinically successful drug delivery systems that have accelerated the development of mRNA drugs and vaccines. Among various structural components of LNPs, more recent attention has been paid in ionizable lipids (ILs) that was supposed as the key component in determining the effectiveness of LNPs for in vivo mRNA delivery. ILs are typically comprised of three moieties including ionizable heads, linkers, and hydrophobic tails, which suggested that the combination of different functional groups in three moieties could produce ILs with diverse chemical structures and biological identities. In this concept article, we provide a summary of chemical design strategy for high-performing IL candidates and discuss their structure-activity relationships for shifting tissue-selective mRNA delivery. We also propose an outlook for the development of next-generation ILs, enabling the broader translation of mRNA formulated with LNPs.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38717294

RESUMEN

Much of current clinical interest has focused on mRNA therapeutics for the treatment of lung-associated diseases, such as infections, genetic disorders, and cancers. However, the safe and efficient delivery of mRNA therapeutics to the lungs, especially to different pulmonary cell types, is still a formidable challenge. In this paper, we proposed a cationic lipid pair (CLP) strategy, which utilized the liver-targeted ionizable lipid and its derived quaternary ammonium lipid as the CLP to improve liver-to-lung tropism of four-component lipid nanoparticles (LNPs) for in vivo mRNA delivery. Interestingly, the structure-activity investigation identified that using liver-targeted ionizable lipids with higher mRNA delivery performance and their derived lipid counterparts is the optimal CLP design for improving lung-targeted mRNA delivery. The CLP strategy was also verified to be universal and suitable for clinically available ionizable lipids such as SM-102 and ALC-0315 to develop lung-targeted LNP delivery systems. Moreover, we demonstrated that CLP-based LNPs were safe and exhibited potent mRNA transfection in pulmonary endothelial and epithelial cells. As a result, we provided a powerful CLP strategy for shifting the mRNA delivery preference of LNPs from the liver to the lungs, exhibiting great potential for broadening the application scenario of mRNA-based therapy.

3.
Molecules ; 29(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543035

RESUMEN

To investigate the influence of deashing on fusion characteristics, a combined method of water and acid washing with different sequences (water washing followed by acid washing, and acid washing followed by water washing) was used to treat the biochar of bamboo shoot shells (BBSSs). The results show that deashing decreased the K content of the biochar from 50.3% to 1.08% but increased the Si content from 33.48% to 89.15%. The formation of silicates and aluminosilicates from alkali metal oxides with silicon was an inevitable result of ash phase transformation at the high temperatures used to improve the fusion temperature (>1450 °C). The thermochemical behavior of ash mainly occurs at 1000 °C. The deashing treatment significantly reduced the reaction intensity during the high-temperature process. This significantly increased the thermal stability of the ash. The adjustment of the washing sequence had a slight impact on the chemical compositions, but the differences in ash micromorphology were obvious. Deashing treatments with different washing sequences can significantly improve ash fusion properties effectively and reduce the risk of scaling, slagging, and corrosion. This study provides a new and reasonable strategy for the deashing of biochar to commercially utilize bamboo shoot shell resources.


Asunto(s)
Álcalis , Carbón Orgánico , Carbón Orgánico/química , Temperatura , Agua , Ceniza del Carbón
4.
J Agric Food Chem ; 72(10): 5368-5378, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38394628

RESUMEN

This study employed adaptive laboratory evolution to improve the acid tolerance of Lactiplantibacillus plantarum, a vital strain in food fermentation and a potential probiotic. Phenotype and genomic analyses identified the overexpression of stress response proteins, ATP synthases, and transporters as pivotal in conferring acid tolerance to the evolved strains. These adaptations led to a shorter lag phase, improved survival rates, and higher intracellular pH values compared to the wild-type strain under acid stress conditions. Additionally, the evolved strains showed an increased expression of genes in the fatty acid synthesis pathway, resulting in a higher production of unsaturated fatty acids. The changes in cell membrane composition possibly prevented H+ influx, while mutant genes related to cell surface structure contributed to observed elongated cells and thicker cell surface. These alterations in cell wall and membrane composition, along with improved transporter efficiency, were key factors contributing to the enhanced acid tolerance in the evolved strains.


Asunto(s)
Lactobacillus plantarum , Probióticos , Membrana Celular , Pared Celular , Fermentación , Genómica , Proteínas de Choque Térmico , Proteínas de Transporte de Membrana
5.
Med Sci Monit ; 30: e940146, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38234086

RESUMEN

BACKGROUND Limited research has been conducted on laparoscopic partial nephrectomy for kidney tuberculosis. This study aimed to evaluate the effectiveness of the skirted continuous suture technique in laparoscopic partial nephrectomy for localized renal tuberculosis. MATERIAL AND METHODS Five patients with kidney tuberculosis underwent standard retroperitoneal laparoscopic partial nephrectomy after computed tomography evaluation. The skirted continuous suture technique was utilized during the procedure. This retrospective study analyzed the outcomes of these patients who received treatment between January 2011 and December 2020 at Beijing Tsinghua Changgung Hospital and Eighth Medical Center of Chinese People's Liberation Army General Hospital. RESULTS The surgical success rate was 100%. Renal function was well preserved, with a decrease of glomerular filtration rate by 9.6±9.0 ml/min. Only 1 patient experienced postoperative urinous infiltration and lymphatic fistula, while the others did not have any surgical complications. Antituberculous therapy was continued postoperatively, and 1 patient had recurrence during follow-up. CONCLUSIONS The laparoscopic continuous suturing technique offers a reliable and straightforward method for extensively closing incision edges of the renal parenchyma in laparoscopic surgery. It contributes to the improved efficacy and safety of treating localized renal tuberculosis with exceptional application.


Asunto(s)
Neoplasias Renales , Laparoscopía , Nefrectomía , Tuberculosis Renal , Humanos , Neoplasias Renales/cirugía , Laparoscopía/métodos , Nefrectomía/métodos , Estudios Retrospectivos , Técnicas de Sutura , Resultado del Tratamiento , Tuberculosis Renal/cirugía , Tuberculosis Renal/etiología
6.
Foods ; 13(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38254595

RESUMEN

This study aimed to explore the potential of umami peptides for lowering blood glucose. Molecular docking results showed that the peptides LADW and EEAEGT bound to the active amino acid residues of α-glucosidase via hydrogen bonds and Van der Waals forces, a finding supported by an independent gradient model (IGM). Molecular dynamics (MD) simulations demonstrated that the peptides LADW and EEAEGT can decelerate the outward expansion of α-glucosidase and reduce amino acid fluctuations at the active site. In vitro findings indicated that the peptides LADW and EEAEGT showed potent inhibitory activity against α-glucosidase, with IC50 values of 4.40 ± 0.04 and 6.46 ± 0.22 mM, respectively. Furthermore, MD simulation and morphological observation results also revealed that LADW and EEAEGT alter starch structure and form weak interactions with starch through intermolecular hydrogen bonding, leading to the inhibition of starch hydrolysis. Peptides inhibit the ability of starch to produce reducing sugars after simulated gastrointestinal digestion, providing additional evidence of the inhibition of starch hydrolysis by the added peptides. Taken together, these findings suggest that consuming the umami peptides LADW and EEAEGT may alleviate postprandial blood glucose elevations via inhibiting α-glucosidase and starch hydrolysis.

7.
Food Res Int ; 173(Pt 2): 113397, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803735

RESUMEN

The influence of Pichia spp. on flavor formation and metabolic pathways during chili pepper fermentation was investigated in this study. Multiple omics approaches were employed, including metabolomics analysis to identify volatile and non-volatile flavor compounds, and genomic analysis to gain insights into the underlying molecular mechanism driving flavor formation of chili peppers inoculated with Pichia spp. The results showed that inoculation with Pichia spp. accelerated fermentation process of chili peppers compared to spontaneous fermentation. Metabolomics analysis showed P. fermentans promoted characteristic terpenes [e.g., (Z)-ß-ocimene and linalool], L-glutamate, gamma-aminobutyric acid, and succinate production, while P. manshurica produced more alcohols (e.g., isoamyl alcohol and phenylethyl alcohol) and phenols (e.g., 4-ethylguaiacol and 2-methoxy-4-methylphenol). Genomics analysis revealed that a substantial portion of the genes in Pichia spp. were associated with amino acid and carbohydrate metabolism. Specifically, the pathways involved in amino acid metabolism and the release of glycoside-bound aromatic compounds were identified as the primary drivers behind the unique flavor of fermented chili peppers, facilitated by Pichia spp.


Asunto(s)
Capsicum , Pichia , Pichia/genética , Pichia/metabolismo , Capsicum/metabolismo , Alcoholes/metabolismo , Genómica , Alcanfor/metabolismo , Aminoácidos/metabolismo
8.
Angew Chem Int Ed Engl ; 62(43): e202310401, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37661193

RESUMEN

The development of lipid nanoparticles (LNPs) has enabled a successful clinical application of mRNA vaccines. However, disclosure of design principles for the core component-ionizable lipids (ILs), improving the delivery efficacy and organ targeting of LNPs, remains a formidable challenge. Herein, we report a powerful strategy to modulate ILs in one-step chemistry using the Ugi four-component reaction (Ugi-4CR) under mild conditions. A large IL library of new structures was established simply and efficiently through a multidimensional approach, allowing us to identify the top-performing ILs in delivering mRNA via the formulated LNPs. Adjusting the skeleton of ILs has transformed the organ-specific and robust transfection in mRNA delivery from the liver to the spleen following different administration routes. Of note, a series of isomeric ILs were prepared and we found that the isomers mattered greatly in the performance of LNPs for mRNA delivery. Furthermore, owing to the bis-amide bonds formed in the Ugi-4CR reaction, the ILs within LNPs may form hydrogen bonding intermolecularly, facilitating the colloidal stabilization of LNPs. This work provides clues to the rapid discovery and rational design of IL candidates, assisting the application of mRNA therapeutics.

9.
Front Surg ; 10: 1225890, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719888

RESUMEN

Castleman disease is a rare heterogeneous lymphoproliferative disorder of unknown etiology. Unicentric Castleman disease (UCD) is more common. UCD can occur at any site where lymphatic tissue exists, most commonly in the mediastinum, neck, and abdominal cavity, etc. in the current study, we reported a 46-year-old woman, who has left low back pain and discomfort. Magnetic resonance imaging (MRI) of the kidneys showed the left renal pelvis was occupied, left hydronephrosis, and the left renal hilum and retroperitoneal lymph nodes were enlarged. Enhanced kidney CT showed that the "pelvic tumor" was moderately enhanced in the bottom part in corticomedullary phase, while in nephrogenic phase, it was unevenly enhanced with a highly enhanced bottom part and weakly enhanced upper part. In excretory phase, reinforcement was decreased. "left renal pelvis tumor" was diagnosed and she underwent surgical treatment with left nephrectomy. However, histopathological examination indicated the UCD. We suggest that for renal pelvic tumors having imaging characteristics of homogeneous soft tissue density and heterogeneous CT enhancement, the hyaline vascular type of UCD could be taken into consideration for differential diagnosis.

10.
Int J Biol Macromol ; 253(Pt 3): 126690, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37673156

RESUMEN

The softening of acidified chili peppers induced by processing and storage has become a major challenge for the food industry. This study aims to explore the impact of pasteurization techniques, thermal processing (TP), high-pressure processing (HPP), addition of sodium metabisulfite (SMS), and storage conditions (25 °C, 37 °C, and 42 °C for 30 days) on the texture-related properties of acidified chili pepper. The results showed that the textural properties of samples were destructed by TP (the hardness of samples decreased by 19.43 %) but were less affected by HPP and SMS. Compared with processing, storage temperature had a more dominant impact on texture and pectin characteristics. With increased storage temperature, water-solubilized pectin fraction content increased (increased by 160.99 %, 136.74 %, and 13.01 % in TP, HPP, and SMS-stored groups, respectively), but sodium carbonate-solubilized pectin fraction content decreased (decreased by 29.84 %, 26.81 %, and 8.60 % in TP-, HPP-, and SMS-stored groups, respectively), especially in TP-stored groups. Multivariate data analysis showed that softening was more closely related to pectin conversion induced by acid hydrolysis and pectinase depolymerization. This finding offers new perspectives for the production of acidified chili pepper.


Asunto(s)
Capsicum , Pasteurización , Pectinas , Temperatura , Antioxidantes/análisis
11.
Adv Mater ; 35(47): e2304638, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37681325

RESUMEN

Chronic diabetic wounds are a significant global healthcare challenge. Current strategies, such as biomaterials, cell therapies, and medical devices, however, only target a few pathological features and have limited efficacy. A powerful platform technology combining magneto-responsive hydrogel, cells, and wireless magneto-induced dynamic mechanical stimulation (MDMS) is developed to accelerate diabetic wound healing. The hydrogel encapsulates U.S. Food and Drug Administration (FDA)-approved fibroblasts and keratinocytes to achieve ∼3-fold better wound closure in a diabetic mouse model. MDMS acts as a nongenetic mechano-rheostat to activate fibroblasts, resulting in ∼240% better proliferation, ∼220% more collagen deposition, and improved keratinocyte paracrine profiles via the Ras/MEK/ERK pathway to boost angiogenesis. The magneto-responsive property also enables on-demand insulin release for spatiotemporal glucose regulation through increasing network deformation and interstitial flow. By mining scRNAseq data, a mechanosensitive fibroblast subpopulation is identified that can be mechanically tuned for enhanced proliferation and collagen production, maximizing therapeutic impact. The "all-in-one" system addresses major pathological factors associated with diabetic wounds in a single platform, with potential applications for other challenging wound types.


Asunto(s)
Diabetes Mellitus , Cicatrización de Heridas , Ratones , Animales , Diabetes Mellitus/terapia , Diabetes Mellitus/patología , Queratinocitos , Colágeno , Hidrogeles/farmacología
12.
ACS Cent Sci ; 9(7): 1313-1326, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37521791

RESUMEN

Intracellular delivery of therapeutic biomacromolecules is often challenged by the poor transmembrane and limited endosomal escape. Here, we establish a combinatorial library composed of 150 molecular weight-defined gemini amphiphiles (GAs) to identify the vehicles that facilitate robust cytosolic delivery of proteins in vitro and in vivo. These GAs display similar skeletal structures but differential amphiphilicity by adjusting the length of alkyl tails, type of ionizable cationic heads, and hydrophobicity or hydrophilicity of a spacer. The top candidate is highly efficient in translocating a broad spectrum of proteins with various molecular weights and isoelectric points into the cytosol. Particularly, we notice that the entry mechanism is predominantly mediated via the lipid raft-dependent membrane fusion, bypassing the classical endocytic pathway that limits the cytosolic delivery efficiency of many presently available carriers. Remarkably, the top GA candidate is capable of delivering hard-to-deliver Cas9 ribonucleoprotein in vivo, disrupting KRAS mutation in the tumor-bearing mice to inhibit tumor growth and extend their survival. Our study reveals a GA-based small-molecule carrier platform for the direct cytosolic delivery of various types of proteins for therapeutic purposes.

13.
Opt Express ; 31(8): 13195-13210, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37157462

RESUMEN

The high-precision measurement of the six degrees-of-freedom (6DoF) relative position and pose deformation of satellites on the ground in vacuum and high-/low-temperature environments plays a critical role in ensuring the on-orbit mapping accuracy of satellites. To meet the strict measurement requirements for a satellite of a high accuracy, high stability, and a miniaturized measurement system, this paper proposes a laser measurement method for simultaneously measuring 6DoF relative position and attitude. In particular, a miniaturized measurement system was developed and a measurement model was established. The problem of error crosstalk between the 6DoF relative position and pose measurements was solved by conducting a theoretical analysis and OpticStudio software simulation, and the measurement accuracy was improved. Laboratory experiments and field tests were then conducted. The experimental results revealed that the measurement accuracy of the developed system for the relative position and relative attitude reached 0.2 µm and 0.4", within the measurement ranges of 500 mm along the X axis, ±100 µm along Y and Z axes, and ±100", and the 24-h measurement stabilities were superior to 0.5 µm and 0.5", respectively, which meets the ground measurement requirements for the satellite. The developed system was successfully applied on site, and the 6Dof relative position and pose deformation of the satellite were obtained via a thermal load test. This novel measurement method and system provides an experimental means for satellite development, in addition to a method for the high-precision measurement of the relative 6DoF position and pose between two points.

14.
ACS Appl Mater Interfaces ; 15(22): 26328-26339, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37219911

RESUMEN

Carrier-mediated intracellular protein delivery holds tremendous application potential in biology and medicine. The ideal carrier should be well-controlled and cost-effective and able to facilitate robust delivery of diverse types of proteins into the target cells, thus ensuring efficacy in different application scenarios. Here, we describe a modular chemistry approach for generating a small-molecule amphiphile molecular library based on the Ugi four-component reaction under one-pot and mild conditions. Then, two different types of amphiphiles with the dimeric or trimeric architecture were obtained for intracellular protein delivery through in vitro screening test. Depending on the precise adjustment of the hydrophobic tails of amphiphiles, the optimized trimeric amphiphile (TA) exhibited more superior protein loading performance and a higher efficiency of delivering proteins into cells through the endocytosis pathway and subsequent endosomal escape. Furthermore, we demonstrated that the TA could be a universal delivery carrier capable of transporting broad-spectrum proteins, especially for the hard-to-deliver native antibodies, into the cytosol. Overall, we describe a robust amphiphile platform with a well-defined and cost-effective design to improve the cytosolic protein delivery capacity, exhibiting great promise for developing intracellular protein-based therapeutics.


Asunto(s)
Portadores de Fármacos , Preparaciones Farmacéuticas , Proteínas , Tensoactivos , Portadores de Fármacos/química , Tensoactivos/química
15.
J Cancer Res Ther ; 19(1): 39-44, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37006041

RESUMEN

Aim: To study the risk factors for cancer-specific mortality (CSM) among patients with localized clear cell renal carcinoma (LCCRC) in the Chinese population. Methods: The clinical data of 1,376 LCCRC patients were postoperatively collected to analyze the correlations between CSM and multiple factors using Cox regression analysis. Receiver operating characteristic curves were constructed as per the screened risk factors to identify factors with optimal criticality judgment values, which were then used as the scoring standard for the stratification evaluation of LCCRC prognosis. Results: The CSM rate was 5.6% (77/1,376 cases) and the median follow-up duration was 78.1 (60-105) months. Cox analysis revealed that age, tumor diameter, and nuclear grade were associated with CSM. The optimal criticality judgment values for age and tumor diameter using receiver operating characteristic curve analysis were 53 years and 5.8 cm, respectively. LCCRC prognosis divided into low-risk (≤ 2 points), intermediate-risk (3-4 points), and high-risk (5 points) showed CSM rates of 3.8%, 13.8%, and 58.3%, respectively, among patients with more than 5 years of follow-up. Conclusions: Age, tumor diameter, and nuclear grade were important risk factors for CSM in LCCRC patients. The scoring criteria including these three risk factors may be an important supplement to the prognostic model of LCCRC in the Chinese population.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/cirugía , Neoplasias Renales/diagnóstico , Neoplasias Renales/cirugía , Nefrectomía/efectos adversos , Detección Precoz del Cáncer , Pronóstico , Factores de Riesgo
16.
Molecules ; 28(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37110642

RESUMEN

To effectively remove methylene blue (MB) from dye wastewater, a novel activated carbon (BAC) was manufactured through co-pyrolysis of bamboo shoot shell and K2FeO4. The activation process was optimized to a temperature of 750 °C and an activation time of 90 min based on its excellent adsorption capacity of 560.94 mg/g with a yield of 10.03%. The physicochemical and adsorption properties of BACs were investigated. The BAC had an ultrahigh specific surface area of 2327.7 cm2/g and abundant active functional groups. The adsorption mechanisms included chemisorption and physisorption. The Freundlich model could be used to describe the isothermal adsorption of MB. The kinetics confirmed that the adsorption of MB belonged to the pseudo-second-order model. Intra-particle diffusion was the main rate-limiting step. The thermodynamic study showed that the adsorption process was endothermic and temperature was beneficial for the improvement of adsorption property. Furthermore, the removal rate of MB was 63.5% after three cycles. The BAC will have great potential for commercial development for purifying dye wastewater.

17.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36768806

RESUMEN

This study systematically investigated the differences in allergenicity of casein in cow milk (CM), goat milk (GM), camel milk (CAM), and mare milk (MM) from protein structures using bioinformatics. Primary structure sequence analysis reveals high sequence similarity between the α-casein of CM and GM, while all allergenic subtypes are likely to have good hydrophilicity and thermal stability. By analyzing linear B-cell epitope, T-cell epitope, and allergenic peptides, the strongest casein allergenicity is observed for CM, followed by GM, and the casein of MM has the weakest allergenicity. Meanwhile, 7, 9, and 16 similar or identical amino acid fragments in linear B-cell epitopes, T-cell epitopes, and allergenic peptides, respectively, were observed in different milks. Among these, the same T-cell epitope FLGAEVQNQ was shared by κ-CN in all four different species' milk. Epitope results may provide targets of allergenic fragments for reducing milk allergenicity through physical or/and chemical methods. This study explained the underlying secrets for the high allergenicity of CM to some extent from the perspective of casein and provided new insights for the dairy industry to reduce milk allergy. Furthermore, it provides a new idea and method for comparing the allergenicity of homologous proteins from different species.


Asunto(s)
Camelus , Caseínas , Animales , Femenino , Caballos , Bovinos , Caseínas/química , Alérgenos/metabolismo , Cabras/metabolismo , Epítopos de Linfocito T , Inmunoglobulina E , Péptidos , Epítopos de Linfocito B , Proteínas de la Leche
18.
19.
Food Res Int ; 163: 112224, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596153

RESUMEN

In this study, genomics and metabolomics were combined to reveal possible bio-synthetic pathways of core flavor compounds in pickled chayote via lactic acid bacteria (LAB) fermentation. The Lactiplantibacillus plantarum, Levilactobacillus brevis, and Lacticaseibacillus paracasei were selected as core LAB strains with better flavor-producing ability for chayote fermentation. The genomic results showed L. plantarum contained the largest number of metabolism annotated genes, while L. brevis had the fewest. Besides, the largest number of volatile compounds was detected in chayote fermented by L. plantarum, followed by L. brevis and L. paracasei. Some unique odor-active compounds (aldehydes, esters, and alcohols) and taste-active compounds (amino acids and dipeptides) were produced by different LAB strains. Accordingly, phenylalanine metabolic pathway (M00360), amino acid metabolic decomposition pathway (the Ehrlich pathway) and the anabolic pathway (the Harris pathway), and fatty acid biosynthesis pathway (M00061) were the main biosynthesis pathway involved in the flavor formation via LAB fermentation.


Asunto(s)
Lactobacillales , Lactobacillus plantarum , Lactobacillales/genética , Lactobacillus/metabolismo , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Alcoholes/metabolismo , Aminoácidos/metabolismo , Genómica
20.
Chemistry ; 29(12): e202203460, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36445789

RESUMEN

Insulin, a main medication to control glycemia of type 1 and advanced type 2 diabetes, faces problems of a short half-life and poor stability during its clinical use. Zwitterionic polymer shows unique properties of antifouling and low immunogenicity. Here, we have synthesized a new insulin-zwitterionic polymer conjugate (INS-PMPC) through grafting-from strategy by controlled radical polymerization. Apart from showing excellent stability upon mechanical agitation, the resulting INS-PMPC conjugate provided over 20 h of glycemic control due to improved pharmacokinetics in diabetic mice with one single subcutaneous injection. Most importantly, this insulin-zwitterionic polymer conjugate significantly decreases the incidence of hypoglycemia.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hipoglucemia , Animales , Ratones , Insulina de Acción Prolongada , Polímeros , Hipoglucemia/epidemiología , Insulina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...